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Abstract
The malonyl-CoA decarboxylase (MCD) inhibition activity of derivatives of N-alkyl-N-(1,1,1,3,3,3-hexafluoro-2-hydroxy-
propylphenyl)amide has been analyzed through combinatorial protocol in multiple linear regression (CP-MLR) using different
topological descriptors obtained from Dragon software for the energy minimized 3D-structures of these molecules. Among the
topological descriptor classes considered in the study, the MCD inhibitionactivity is correlated with simple topological descriptors
(TOPO) and 2D-autocorrelation descriptors (2DAUTO). The complementary information contents having neighborhood
symmetry of 2-order, CIC2 from the TOPO class, the Geary autocorrelations-lag 8, weighted by atomic Sanderson electro-
negativities, GATS8e and the Moran autocorrelations-lag 6, weighted by atomic Sanderson electronegativities, MATS6e both
from 2DAUTO class have contributed significantly in the development of a statistical significant model.

Keywords: Quantitative structure-activity relationship (QSAR), malonyl-CoA decarboxylase inhibitors (MCD), N-alkyl-
N-(1,1,1,3,3,3-hexafluoro-2-hydroxypropylphenyl)amides, combinatorial protocol in multiple linear regression (CP-MLR),
topological descriptors

Introduction

The enzyme malonyl-CoA decarboxylase (MCD, EC

4.1.1.9; CoA ¼ coenzyme A) catalyzes the conver-

sion of malonyl-CoA to acetyl-CoA and thus regulates

malonyl CoA levels. Malonyl-CoA is a potent

endogenous inhibitor of carnitine palmitoyl-transfer-

ase-I (CPT-I), an enzyme necessary for the mitochon-

drial metabolism of long-chain fatty acids. CPT-I, the

rate-limiting enzyme in fatty acid oxidation, catalyzes

the formation of acylcarnitine, which is transported

from the cytosol across the mitochondrial membranes

by acylcarnitine translocase. Inside the mitochondria,

the long-chain fatty acids are transferred back to

their CoA compounds by a complementary enzyme,

CPT-II, where acyl-CoA enters the b-oxidation

pathway, generating acetyl-CoA.

A number of studies indicate that shifting energy

metabolism in the heart towards glucose oxidation is an

effective approach to decrease the symptoms associ-

ated with myocardial ischemia [1,2]. The antianginal

drugs such as ranolazine inhibit fatty acid b-oxidation

and stimulate glucose oxidation [3]. Trimetazidine

has been shown to specifically inhibit the long-chain

3-ketoacetyl CoA thiolase (3-KAT), an essential

step in fatty acid oxidation [4]. Inhibiting CPT-I

activity through increasing malonyl-CoA levels with

MCD inhibitors would result in a novel and perhaps a

much safer method, compared to other known small-

molecule CPT-I inhibitors, to the prophylaxis and

treatment of ischemic heart disease [5].

Recently, Cheng et al. [6] have argued that

increasing the malonyl-CoA level in tissues has

potential application in heart disease and diabetes

therapy. They have screened in-housed library

compounds employing either MCD from rat heart

or maltose-binding protein (MBP)-fused human
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MCD protein and reported a number of small

molecules as MCD inhibitors. These compounds

were derived from the phenylhexafluoroisopropanol

moiety, which was found to be essential for the high

in vitro MCD inhibitory activity having favorable

pharmacokinetic properties with efficacy in regulating

energy metabolism in isolated working rat hearts.

However, their structure-activity relationship (SAR)

study was targeted at the alterations of substituents at

different positions of the said moiety and provided no

rationale to reduce the trial-and error factors. Hence,

in the present communication, a 2D-quantitative SAR

(2D-QSAR) study on these analogues (Table I, along

with the generalized structure) has been conducted to

provide the rationale for drug-design and to explore

the possible mechanism of their action at molecular

level. Recently a 3D-QSAR study on similar type of

inhibitors has been reported [7], using the compara-

tive molecular field analysis (CoMFA) and the

comparative molecular similarity indices analysis

(CoMSIA). This study could reveal the importance

of steric, electrostatic, hydrophobic and H-bond

acceptor fields. Additionally the 3D-contour maps,

obtained through these fields, were proposed to be

used in the design of more potent MCD inhibitors.

Both the 2D- and 3D-QSAR studies are equally

important if the developed statistical models under

them have high predictive power for the new potential

congeners. The emerged models from such studies

may assist to identify the type of interactions involved

between a drug molecule and the receptor sites. The

possible mechanism of action of the compounds

anticipated by one study may, therefore, be corrobo-

rated through the other one. However, a 2D-QSAR

study is quite simple to interpret the biological data in

terms of different descriptors obtained from the two

dimensional structures of the compounds without

involving energy minimization procedures. In a

congeneric series, where a relative study is being

carried out, the 2D- descriptors may play important

role in deriving the significant correlations with

biological activities of the compounds. Thus the

novelty and importance of a 2D-QSAR study is mainly

due to its simplicity for the calculations of different

descriptors and their interpretation (in physical sense)

to explain the inhibition actions of compounds in a

congeneric series.

Material and methods

Data set

In the present study, the compounds derived from

phenylhexafluoro- isopropanol moiety (Table I) have

been considered from the literature [6] along with

their in vitro malonyl coenzyme A decarboxylase

(MCD) inhibition activity. The activity, IC50, was

measured as the concentration of an inhibitor to

achieve 50% inhibition of the MCD enzyme. For

present work, the same is expressed as —logIC50 on a

molar basis. DRAGON software [8] has been used for

the parameterization of the compounds of this study

(Table I). This software offers several hundreds of

descriptors from different perspectives relating to

empirical, constitutional and topological indices

characteristic to the molecules under multi-descriptor

class environment. The structures of the compounds

under study have been drawn in 2D ChemDraw [9]

using the standard procedure. These structures were

converted into 3D objects using the default conversion

procedure implemented in the CS Chem3D Ultra.

The generated 3D-structures of the compounds were

subjected to energy minimization in the MOPAC

module, using the AM1 procedure for closed shell

systems, implemented in the CS Chem3D Ultra. This

will ensure a well defined conformer relationship

across the compounds of the study. All these energy

minimized structures for the varying R1 and R2 groups

of respective compounds have been ported to

DRAGON software for computing the parameters

corresponding to 0D-, 1D-, and 2D-descriptor

classes. The descriptor classes considered in the

study along with their definitions and scope in

addressing the structural features have been presented

in Table II. As the total number of descriptors involved

in this study is very large, only the names of descriptor

classes and the actual descriptor involved in the

models have been listed. The combinatorial protocol-

multiple linear regression (CP-MLR) computational

procedure used for present work in developing QSAR

models is briefly described below.

Model development

The CP-MLR is a ‘filter’ based variable selection

procedure for model development in QSAR studies

[10–13]. The procedure employs a combinatorial

strategy with MLR to result in selected subset

regressions for the extraction of diverse structure-

activity models, each having unique combination of

descriptors from the generated data set of the

compounds under study. The ‘filters’ set in CP-

MLR are intended at (i) having inter-parameter

correlation to a predefined cutoff value (filter-1;

default acceptable value # 0.3, (ii) optimize the

variable entry to a model through t-value of regression

coefficients (filter-2; default acceptable value $ 2.0,

(iii) comparability of models (regression equations)

with different number of descriptor in terms of square

root of adjusted multiple correlation coefficient (filter-

3; r-bar, default acceptable value $ 0.74), and (iv)

addressing the external consistency of the model with

leave-one-out (LOO) cross-validation as default

option (filter-4; cross-validated Q 2 criteria, default

acceptable limits are 0.3 # Q 2 # 1.0). All these filters

make the variable selection process efficient and lead
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Table I. Observed and modeled malonyl coenzyme A decarboxylase inhibition activity of N-alkyl-N-(1,1,1,3,3,3-hexafluoro-2-

hydroxypropylphenyl)amide derivatives.

NR2

O

OHF3C

CF3

R1

–logIC50 (M)

S.No R1 R2 CIC2 MATS6e GATS8e Obsd* Calcd Eq (3)

1 Me CH2OPh 1.704 20.223 0.758 6.03 5.87

2 H CH2OPh 1.470 20.310 0.982 5.18 5.19

3 H CH2CH2Ph 1.638 20.227 0.913 5.36 5.54

4 Me CH2CH2Ph 1.851 20.127 0.731 6.11 6.19

5 Et CH2CH2Ph 1.574 20.066 0.682 6.76 6.96

6 i-Pr CH2CH2Ph 1.692 20.029 0.642 6.70 7.08

7 n-Bu CH2CH2Ph 1.732 20.089 0.519 7.10 7.07

8 CH2COOMe CH2CH2Ph 1.617 20.194 0.608 6.98 6.51

9 CH2COOH CH2CH2Ph 1.517 20.206 0.716 6.43 6.30

10 benzyl CH2CH2Ph 2.070 2 .114 0.527 6.24 6.50

11 cyclohexyl CH2CH2Ph 2.084 20.073 0.491 6.82 6.77

12 H i-Pr 1.343 20.250 1.009 NA† 5.56

13 Me i-Pr 1.544 20.040 0.913 6.75 6.51

14 Me 3-Py 1.369 20.166 0.869 5.99 6.28

15 Me 4-Py 1.475 20.114 0.891 6.41 6.32

16 Et i-Pr 1.513 20.002 0.897 7.39 6.77

17 n-Pr i-Pr 1.455 20.036 0.626 7.55 7.39

18 n-Bu i-Pr 1.490 20.038 0.530 7.70 7.59

19 CH2CH2NMe2 i-Pr 1.719 20.047 0.498 5.94‡ 7.34

20 CH2CH2OH i-Pr 1.328 20.054 0.773 6.98 7.09

21 CH2COOMe i-Pr 1.222 20.123 0.612 7.47 7.33

22 CH2COOH i-Pr 1.244 20.128 0.774 6.20 6.86

23 (CH2)4COOMe i-Pr 1.463 20.015 0.554 7.59 7.67

24 (CH2)4COOH i-Pr 1.331 20.022 0.555 8.10 7.80

25 (CH2)4-(5-1H-tetrazole) i-Pr 1.218 20.028 0.542 8.10 7.95

26 (CH2)4CN i-Pr 1.344 20.035 0.536 7.70 7.77

27 Et p-CNPh 1.402 20.067 0.701 7.43 7.12

28 Et 4-Py 1.214 20.055 0.791 7.02 7.19

29 H NHPh 1.758 20.345 0.862 NA† 4.97

30 Me NHPh 1.836 20.225 0.705 5.81 5.83

31 H morpholinyl 1.269 20.264 0.836 NA† 6.04

32 Et NMe2 1.587 20.025 0.890 7.23 6.59

33 Et N(Et)(CH2)4OH 1.444 20.035 0.542 7.22 7.63

34 Me morpholinyl 1.456 20.072 0.790 6.49 6.80

35 Et morpholinyl 1.373 20.036 0.726 7.13 7.24

36 n-Pr morpholinyl 1.329 20.079 0.578 7.47 7.48

37 n-Bu morpholinyl 1.368 20.076 0.527 7.52 7.58

38 n-pentyl morpholinyl 1.431 20.076 0.574 7.72 7.38

39 n-hexyl morpholinyl 1.540 20.063 0.568 7.51 7.31

40 n-heptyl morpholinyl 1.662 20.055 0.573 7.14 7.18

41 octyl morpholinyl 1.790 20.048 0.562 6.57 7.07

42 CH2CH2Ph morpholinyl 1.642 20.055 0.588 7.37 7.16

43 CH2CH2OH morpholinyl 1.506 20.084 0.729 6.78 6.84

44 CH2COOMe morpholinyl 1.329 20.135 0.707 7.10 6.89

45 CH2CH2COOMe morpholinyl 1.385 0.012 0.893 7.00 7.01

46 CH2CH2COOH morpholinyl 1.313 0.012 0.874 6.61 7.15

Qsar on malonyl coenzyme a decarboxylase inhibitors 79
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to unique solution. Further, to find out any chance

correlations associated with the models recognized in

CP-MLR, each cross-validated model has been

subjected to randomization test [14,15] by repeated

randomization of the biological responses. The

datasets with randomized response vector have been

reassessed by multiple regression analysis. The

resulting regression equations, if any, with correlation

coefficients better than or equal to the one corre-

sponding to unscrambled response data were counted.

Every model has been subjected to 100 such

simulation runs. This has been used as a measure to

express the percent chance correlation of the model

under scrutiny. The CP-MLR protocol has been

applied with default filter thresholds to identify the all

possible models that could emerge from the descrip-

tors of compounds.

Results and discussion

In multi-descriptor class environment, exploring for

best model equation(s) along the descriptor class

provides an opportunity to unravel the phenomenon

under investigation. In other words, the concepts

embedded in the descriptor classes relate the biological

actions revealed by the compounds. With this,

attempts have been made to develop one-, and two-

descriptor models for the malonyl coenzyme A

decarboxylase inhibition activity of N-alkyl-N-

(1,1,1,3,3,3-hexafluoro-2-hydroxypropylphenyl)-

amide derivatives. The study has led to forty-one

models in the topological (TOPO) class descriptors,

one model each in modified Burden eigenvalues

(BCUT), and Galvez topological charge indices

(GVZ) and twenty-six models in 2D-autocorrelations

(2DAUTO) class descriptors (Table II). In these

individual classes, the models derived in two descrip-

tors, compared to the models in one- or three-

descriptors, are only statistically sound. Thus, the

collective descriptors of these classes may further result

into the improved models. However, no derived model

in collective descriptors could explain the variance in

activity beyond 67%. This prompted us to search out

for the models in three-descriptors from the collective

class, resetting filter-3 at 0.84 without altering the

other filters. The extract of all such models obtained

from the study has been provided in Table III in the

form of identified descriptor’s average of regression

coefficients along with standard deviation across the

models and the total incidence corresponding to all the

models. This, while providing the averages of the

estimated regression coefficients of all the identified

Table I – continued

–logIC50 (M)

S.No R1 R2 CIC2 MATS6e GATS8e Obsd* Calcd Eq (3)

47 (CH2)3COOMe morpholinyl 1.457 20.048 0.677 7.13 7.20

48 (CH2)3CN morpholinyl 1.327 20.072 0.589 7.40 7.49

49 (CH2)4COOMe morpholinyl 1.536 20.050 0.530 7.38 7.47

50 (CH2)4COOH morpholinyl 1.417 20.061 0.528 7.85 7.58

* IC50 represents the concentration of an inhibitor to bring out 50% inhibition of the MCD enzyme; taken from ref. (6); † inactive at 10mM.;
‡ ‘outlier’ compound of present study.

Table II. Descriptor classes used for the analysis of malonyl coenzyme A decarboxylase inhibitiory activity of N-alkyl-N-(1,1,1,3,3,3-

hexafluoro-2-hydroxypropyl phenyl)amide derivatives and identified categories in modeling the activity.

Descriptor class

(acronyms) Definition and scope

Descriptors per model

(Number of models)*

Topological (TOPO) 2D-descriptor from molecular graphs & independent of conformations 2 (41)

Modified Burden eigenvalues

(BCUT)

2D-descriptors representing positive & negative eigenvalues of the adjacency

matrix, weights the diagonal elements and atoms

2 (1)

Galvez topological charge

indices (GVZ)

2D-descriptors representing the first 10 eigenvalues of corrected adjacency

matrix

1 (1); 2 (1)

2D-autocorrelations

(2DAUTO)

Molecular descsriptors calculated from the molecular graphs by summing the

products of atom weights of the terminal atoms of all the paths of the

considered path length (the lag)

1 (1); 2 (26)

* Models emerged from CP-MLR protocol with filter-1 as 0.3; filter-2 as 2.0; filter-3 as 0.74; filter-4 as 0.3 # Q 2 # 1.0, number of

compounds in each dataset was 47.
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descriptors, shows their variance across the models

emerging from the study as well. To be concise, the

complete regression equations have been shown for

selected models only. The following regression

equations represent collective class structure-activity

model of the compounds.

2log IC50 ¼ 9:686ð1:540ÞBIC2

þ 4:292ð0:850ÞMATS8e

2 1:693ð0:445ÞGATS7e þ 0:483

n ¼ 47; r ¼ 0:859; Q2 ¼ 0:672;

s ¼ 0:384; Fð3;43Þ ¼ 40:328

ð1Þ

2log IC50 ¼ 1:427ð0:272ÞCIC2

þ 4:382ð0:806ÞMATS6e

2 2:395ð0:398ÞGATS8e þ 11:085

n ¼ 47; r ¼ 0:868; Q2 ¼ 0:753;

hskip11pts ¼ 0:367; Fð3; 43Þ ¼ 43:798

ð2Þ

In above and all the follow up regression equations,

n is the number of compounds, r is the correlation

coefficient, Q 2 is cross-validated index from leave-one-

out (LOO) procedure, s is the standard error of the

estimate and F is the F-ratio between the variances of

calculated and observed activities. The values given in

the parentheses are the standard errors of the

regression coefficients. Also, in the randomization

study, where 100 simulations per model were carried

out, none of the identified models has shown any

chance correlation. The six models, including the

above-shown two, emerged from the collective class of

descriptors belonging to TOPO, BCUT, GVZ and

2DAUTO classes. However the above two models,

being more significant compared to remaining four

(not given here), shared the descriptors belonging to

TOPO and 2DAUTO classes only. Among these

descriptors, the bond information contents, BIC2 and

the complementary information contents, CIC2, both

being neighborhood symmetry of 2-order, belong to

TOPO class. The 2DAUTO descriptors, MATSke and

GATSke have their origin in autocorrelation of

topological structure of Moran and of Geary [16,17],

respectively. The computation of these descriptors

involves the summation of different autocorrelation

functions corresponding to the different fragment

lengths and lead to different autocorrelation vectors

corresponding to the lengths of the structural

fragments [18]. Also a weighting component in terms

of a physicochemical property has been embedded in

these descriptors. As a result, these descriptors address

the topology of the structure or parts thereof in

association with a selected physicochemical property.

In these descriptors’ nomenclature, the penultimate

character, a number, indicates the number of

consecutively connected edges considered in its

computation and is called as the autocorrelation vector

of lag k (corresponding to the number of edges in the

unit fragment). The very last character of

the descriptor’s nomenclature indicates the physico-

chemical property considered in the weighting com-

ponent— e for atomic Sanderson electronegativity—

for its computation. In above two equations, Geary

autocorrelation lag 7 and 8 weighted by electro-

negativity (GATS7e and GATS8e) and Moran auto-

correlation lag 6 and 8 weighted by electronegativity

(MATS6e and MATS8e) are correlated with the

activity. From Table III, it appears that though the

descriptors of Equation (1) have participated in more

number of models compared to the descriptors of

Equation (2) but the later one is statistically more

significant. This implies that the descriptors of

Equation (2) are more enriched in information content

to influence the malonyl coenzyme A decarboxylase

inhibition activities of the compounds under study.

This equation was, therefore, considered further to

draw some meaningful conclusions. The lone com-

pound 19, bearing a CH2CH2NMe2 substituent at R1,

does not fit into the trend followed by other congeners

of the series. A basic group such as the N,N-

dimethylamino group at the terminal position, separ-

ated through 4-lags, is undesirable and may

significantly decrease the potency [6]. Possibly, an

acidic or neutral moiety present at lag-4 is essential for

desired interaction of R1 substituents. This compound

was, therefore, eliminated from the data-set and the

derived correlation is shown in Equation (3)

2log IC50 ¼ 21:285ð0:224ÞCIC2

þ 4:579ð0:661ÞMATS6e

2 2:603ð0:328ÞGATS8e þ 11:057

n ¼ 46; r ¼ 0:911; Q2 ¼ 0:791;

s ¼ 0:285; Fð3; 42Þ ¼ 68:620

ð3Þ

All the statistical parameters of this equation are

improved over to that of Equation (2). The r 2 now

accounts for 83% of variance in observed activity values

while F-value remained significant at 99% level

[F3,43(0.01) ¼ 4.30]. Also, the value obtained for

cross-validated Q 2 index is in favor of a robust

QSAR model. Above model equation was further

subjected to randomization process, where 100

simulations per model were carried out but none of

the identified models has shown any chance

correlation.
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Additionally, the above model equation was also

subjected to external validation. For this purpose

three test sets, each containing 14 compounds out of

the 46 active ones listed in Table I, were considered.

Of the three test sets, two were generated in the

SYSTAT [19] using the single linkage hierarchical

cluster procedure involving the Euclidean distances

of the respective descriptors or the activity as the

case may be. The selection of the test set from the

cluster tree was done in such a way to keep the test

compounds at a maximum possible distance from

each other. The third test set of the compounds

corresponds to the random selection procedure. With

this, these test sets represent different cross-sections of

compounds. The predictions of the test sets have

been done with the models developed using the 46

compounds remaining in the training sets.

The activity values of all three inactive compounds

(12, 29 and 31) have also been predicted from these

sets. The residuals of the predictions and the

corresponding predictive R 2-values of each test set

have been given in Table IV. The predictions

corresponding to all compounds in three test sets are

within the reasonable limits of their actual values. Also,

all the models from the training sets have predicted the

two out of the three inactive compounds as low active

ones. The exception is with compound 31 which is

bearing a morpholinyl moiety (Table I) as the varying

group in this congener and predicted to have activity

values, from three test sets, in the range of slight active

compounds. The calculated activity value of outlier

compound 19, using Equation (3), has significantly

deviated from the observed ones (Table I). Also, the

predicted activity of this congener, from three test sets

Table III. Descriptors identified for modeling the malonyl coenzyme A decarboxylase inhibitory activity of N-alkyl-N-(1,1,1,3,3,3-

hexafluoro-2-hydroxypropylphenyl)amide derivatives along with the average regression coefficients, standard deviation and the total

incidence.

Descriptor*

Avg reg coeff (sd)

total incidence† Descriptor*

Avg reg coeff (sd)

total incidence†

TOPO

X2A 227.459 (–)1 X0Av 13.395 (–) 1

IVDE 1.959 (–) 1 BIC2 10.675 (1.247) 4

IC1 1.247 (–) 1 IC3 0.794 (–) 1

IC2 2.037 (0.221) 5 SIC3 10.696 (–) 1

TIC2 0.013 (–) 1 BIC3 10.913 (3.004) 3

SIC2 10.694 (1.654) 3 CIC5 1.826 (–) 1

CIC2 21.462 (0.535) 3

BCUT

BELm3 3.327 (0.224) 2 BELm6 3.406 (–) 1

GVZ

GGI2 1.246 (–) 1 JGI8 152.478 (9.716) 4

GGI4 1.240 (–) 1 JGI9 122.281 (–) 1

GGI8 3.453 (0.083) 2

2DAUTO

ATS5p 0.045 (0.011) 2 MATS8e 5.769 (0.505) 4

MATS4m 261.449 (2.748) 2 GATS4e 3.261 (–) 1

MATS5m 247.798 (–) 1 GATS6e 23.611 (0.227) 8

MATS7m 21.965 (5.034) 4 GATS7e 22.256 (0.729) 3

MATS6e 6.475 (–) 1 GATS8e 22.466 (0.174) 2

MATS7e 2.599 (0.713) 2

* The descriptors are identified from the one and two parameter models emerged from CP-MLR protocol with filter-1 as 0.3; filter-2 as 2.0;

filter-3 as 0.76; filter-4 as 0.3 # Q 2 # 1.0; number of compounds in the study was 47; X2A and X0Av are the average connectivity indices

(chi-2 and chi-0, respectively); IVDE is the mean information content on the vertex degree equality; BIC2 and BIC3 are the bond information

contents (neighborhood symmetry of 2- and 3-order, respectively); IC1, IC2 and IC3 are the information content indices (neighborhood

symmetry of 1-, 2- and 3-order, respectively); SIC2 and SIC3 are the structural information contents (neighborhood symmetry of 2- and

3-order, respectively); TIC2 is the total information content index (neighborhood symmetry of 2-order); CIC2 and CIC5 are the

complementary information contents (neighborhood symmetry of 2- and 5-order, respectively); BELm3 and BELm6 are the lowest

eigenvalue n ¼ 3 and 6 of Burden matrices, respectively / weighted by atomic masses; GGI2, GGI4 and GGI8 are the topological charge

indices of order 2, 4 and 8, respectively; JGI8, JGI9 are the mean topological charge indices of order 8 and 9, respectively; ATS5p is the Broto-

Moreau autocorrelation of a topological structure–lag 5/weighted by atomic polariazabilities; MATS4m, MATS5m, MATS7m are the Moran

autocorrelations-lag 4, 5 and 7, respectively / weighted by atomic masses; MATS6e, MATS7e, MATS8e are the Moran autocorrelations-lag 6,

7 and 8, respectively / weighted by atomic Sanderson electronegativities; GATS4e, GATS6e, GATS7e, GATS8e are the Geary

autocorrelations-lag 4, 6, 7 and 8, respectively / weighted by atomic Sanderson electronegativities; also see ref. (7); † the average regression

coefficient of the descriptor corresponding to all models and the total number of its indices; the arithmetic sign of the coefficient represents the

actual sign of the regression coefficient in the models.
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(Table IV), is comparatively much higher. This favors

our consideration that compound 19 is an obvious

outlier. The overall satisfactory performance of all

the test sets provided us the confidence about the

procedure adopted in the study and the variables

selected therein. Additionally, the plot in Figure 1 is

given to show the goodness of fit and to identify the

systematic variation between observed and calcu-

lated—logIC50 values (Equation 3). Similarly, the plot

in Figure 2 is given to demonstrate the trend set by the

compounds of three training sets, derived through

clustering of descriptors, activity values and random

selection. The similar trend is followed by the

compounds present in corresponding test set.
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Figure 1. Plot of observed versus calculated –logIC50 values.

Table IV. Predicted residual activity of three test-sets (14

compounds in each) derived from the compounds in Table I.

Residual*

Compound number Des Clus† Act Clus‡ Rand Clus{

1 0.25

2 0.00 20.20

3 20.16

4 20.05

6 20.23

7 0.09

8 0.49

11 0.10 0.28 0.12

12§ 5.55 5.73 5.53

15 0.06

16 0.77

18 0.13

19 7.31 7.22 7.32

20 20.15

22 20.77

23 20.08

24 0.30

26 20.09

27 0.27

28 20.16 20.21

29§ 4.95 5.11 4.83

30 0.09

31§ 6.04 6.28 5.96

32 0.67 0.79

34 20.30

36 20.07 0.02

38 0.36 0.33

40 20.01

41 20.47

42 0.23 0.30

44 0.24

45 0.00

46 20.46 20.65

47 20.06

48 20.08

50 0.25 0.31

Test set R 2 0.841 0.678 0.850

* The difference between observed and predicted –logIC50 values;

the training models have 32 compounds each; † test-set from the

cluster analysis of all descriptors used in deriving Equation (3);
‡ test-set from the cluster analysis of the activity of the compounds;
{ test-set from random selection of the compounds; § predicted

activity for the compounds which are reported inactive at 10mM.
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Figure 2. Plot of observed –logIC50 versus residual values of

training and test sets developed from (A) Descriptors, (B) Activity

values and (C) Random selection of the compounds.
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The residuals (observed— calculated activity values)

obtained for the aforesaid test sets are found to be

evenly distributed about the zero residual line. The

predictions of three test sets are, therefore, in parity of

what an excellent model can yield.

From Equation (3), it appeared that the comple-

mentary information contents having neighborhood

symmetry of order-2, CIC2 and the Geary auto-

correlations-lag 8, weighted by atomic Sanderson

electronegativities, GATS8e have both added nega-

tively to inhibition activity while the Moran auto-

correlations-lag 6, weighted by atomic Sanderson

electronegativities, MATS6e contributed positively

to it. This implies that the smaller positive values of

the parameters CIC2 and GATS8e and the larger

positive (or smaller negative) value of MATS6e are

preferred to improve the activity of a compound. The

descriptors, MATS6e and GATS8e have emphasized

the importance of electronic enriched centers at the

path length-6 and -8, respectively. These lags, in

particular, are important for the substituents

appeared at R1 and are apparent in the most potent

compounds 24, 25, and 50 (–logIC50 . 7.80;

Table I). It appears that there are two important

sites of the receptor which may be 7 and/or 8 bonds

away from the benzene ring. These sites being

opposite in nature (acidic or basic but not neutral)

may engage themselves in electronic type of inter-

action. The functionality, such as carboxyl group in

compounds 24 and 50 and tetrazolyl ring in

compound 25, appears to be electronically enriched

through lag-6, while the hydrogen present at lag-8 is

unable to do so. The doubly bonded oxygen (of

carboxyl group) or nitrogen (of tetrazolyl ring) atom

may, therefore, engage itself with proton-donor

(acidic) site while hydrogen bonded oxygen or

nitrogen perhaps interact with proton-acceptor

(basic) site of the receptor. This implies that a

descriptor weighted by electronegativity at lag-6,

contributes to enhance the activity and the descriptor

weighted similarly at lag-8 reduces the same. The

positive and negative regression coefficients associ-

ated, respectively to MATS6e and GATS8e,

in Equation (3), have substantiated the same.

Since the biological activity of a compound is by

virtue of the mere presence of its constituent atoms

and bonds, therefore, depending upon the number

and type of atoms and the arrangement of different

bonds, a molecule may conceal unique information

content in the form of electron probability fields

distributed in space. This information content of

different symmetry orders is of considerable import-

ance as its interpretation by the receptor site

determines the efficacy of the drug molecule. The

descriptor CIC2, being the function of molecular

structure is, therefore, embodies the complementary

information content of the 2-order symmetry and

emerged as one of the promising parameter for the

inhibition of MCD. Its negative but significant

contribution to inhibition activity has required for

those substituents in parent structure which could

yield the lower values of CIC2.

Thus the criteria mentioned above may be used to

explore new potential compounds of the series.
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